Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy.
نویسندگان
چکیده
Neurofibrillary tangles (NFTs) are associated with neuronal loss and correlate with cognitive impairment in Alzheimer disease, but how NFTs relate to neuronal death is not clear. We studied cell death in Tg4510 mice that reversibly express P301L mutant human tau and accumulate NFTs using in vivo multiphoton imaging of neurofibrillary pathology, propidium iodide (PI) incorporation into cells, caspase activation, and DNA labeling. We first observed that in live mice, a minority of neurons were labeled with the caspase probe or with PI fluorescence. These markers of cell stress were localized in the same cells and appeared specifically within NFT-bearing neurons. Contrary to expectations, the PI-stained neurons did not die during a day of observation; the presence of Hoechst-positive nuclei in them on the subsequent day indicated that the NFT-associated membrane disruption, as suggested by PI staining, and caspase activation do not lead to immediate death of neurons in this tauopathy model. This unique combination of in vivo multiphoton imaging with markers of cell death and pathological alteration is a powerful tool for investigating neuronal damage associated with neurofibrillary pathology.
منابع مشابه
Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model.
Neurofibrillary tangles are a feature of Alzheimer disease and other tauopathies, and although they are generally believed to be markers of neuronal pathology, there is little evidence evaluating whether tangles directly impact neuronal function. To investigate the response of cells in hippocampal circuits to complex behavioral stimuli, we used an environmental enrichment paradigm to induce exp...
متن کاملPhospho-Tau Accumulation and Structural Alterations of the Golgi Apparatus of Cortical Pyramidal Neurons in the P301S Tauopathy Mouse Model
The Golgi apparatus (GA) is a highly dynamic organelle involved in the processing and sorting of cellular proteins. In Alzheimer's disease (AD), it has been shown to decrease in size and become fragmented in neocortical and hippocampal neuronal subpopulations. This fragmentation and decrease in size of the GA in AD has been related to the accumulation of hyperphosphorylated tau. However, the in...
متن کاملAge-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L).
Here, we describe the generation of a novel transgenic mouse model of human tauopathy. The rTg(tau(P301L))4510 mouse expresses the P301L mutation in tau (4R0N) associated with frontotemporal dementia and parkinsonism linked to chromosome 17. Transgene expression was driven by a forebrain-specific Ca(2+) calmodulin kinase II promoter system resulting in high levels of expression in the hippocamp...
متن کاملHigh copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration
INTRODUCTION Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders, mutations in the gene encoding tau cau...
متن کاملAMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo
Neurofibrillary tangles (NFTs) are the pathological hallmark of neurodegenerative diseases commonly known as tauopathies. NFTs result from the intracellular aggregation of abnormally and hyperphosphorylated tau proteins. Tau functions, which include the regulation of microtubules dynamics, are dependent on its phosphorylation status. As a consequence, any changes in tau phosphorylation can have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 68 7 شماره
صفحات -
تاریخ انتشار 2009